1.2 Graphic and numeric limits

Obj: Define limits and the properties of limits; Evaluate limits graphically and numerically

On your Calculator, graph the $f(x) = \frac{\sin x}{x}$ and see what value does the function approach at x=0.

Is the function actually defined at x=0?

Definition of a Limit:

Numerical Limits

Find the limit. Choose values very close to 1 on both sides.

$$\lim_{t\to 1}\frac{t^2-1}{t-1}$$

Numerical limits are good for absolute Values.

You try.

$$\lim_{x \to -3} \frac{\left| x^2 - 9 \right|}{x + 3}$$

Solving Limits graphically.

- 1. A "limit" is the ______ that a function approaches.
- 2. The function _____ at that point. It only has to approach the same value from both sides.
- 3. A limit can approach from the + or side. These are _____ limits.

Solve the Limits.

Find:

$$f(2) =$$

$$\lim_{x\to 3} f(x) =$$

$$\lim_{x\to 2} f(x) =$$

$$\lim_{x\to -1} f(x) =$$

The existence $\xrightarrow{x \to -1}$ o

existence of f(x) as x approaches c has no bearing on the existence of the limit of f(x) as x approaches c.

3 Ways limits can fail to exist.

1.

2.

3.

One-sided & Two Sided limits

If

(limit from right)

And

(limit from left), then

If the left limit $\pm right$ limit then the overall limit is DNE!

Practice.

1.
$$f(2) =$$

1.
$$f(2) =$$
 5. $f(-5) =$

$$9. \quad \lim_{x \to -3} f(x) =$$

2.
$$\lim_{x \to 2^+} f(x) =$$

2.
$$\lim_{x \to 2^+} f(x) =$$
 6. $\lim_{x \to -5^+} f(x) =$

$$10. \quad \lim_{x \to -\infty} f(x) =$$

$$3. \quad \lim_{x \to 2^{-}} f(x) =$$

7.
$$\lim_{x \to -5^{-}} f(x) =$$

$$11. \quad \lim_{x \to \infty} f(x) =$$

$$4. \quad \lim_{x \to 2} f(x) =$$

8.
$$\lim_{x \to -5} f(x) =$$

12.
$$\lim_{x \to c} f(x) = c \neq -3, -5, 2$$

Write true or false for the following.

a.
$$\lim_{x \to -1^+} f(x) = 1$$

$$d. \lim_{x \to 1^{-}} f(x) = 1$$

$$b. \lim_{x \to 2} f(x) = DNE$$

$$e. \lim_{x \to 1^+} f(x) = 2$$

$$c. \lim_{x \to 2} f(x) = 2$$

$$f. \lim_{x \to 1} f(x) = DNE$$

g.
$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{-}} f(x)$$

Composition of limits

$$\lim_{x \to -5} f(g(x))$$

$$\lim_{x\to 3}g\big(f(x)\big)$$

$$\lim_{x\to 2} g\big(f(x)\big)$$